Math 422, Homework 1

[Your name]

February 8, 2012

1.1.1(b)(d)

"Suppose |A|=m and |B|=n, where m and n are finite, and let $f:A\to B$ be a function from A to B.

- (b) What can you say about m and n if f is one-to-on? if f is onto? if f is a bijection.
- (d) How many possible one-to-one functions are there from A to B? How many possible functions are there from A to B? How many relations are there from A to B?"

Proof. \Box

1.2.6

"Prove that if G is a set with an associative binary operation * such that both of the equations a*x=b and y*a=b have unique solutions whenever a and b are in G, then G is a group."

Proof.

1.2.8

"Prove that if G is a group such that $g^2 = e$ for all $g \in G$, then G is abelian.."

Proof. \Box

1.3.4

"Let p_1, p_2, \ldots, p_k be the first k prime numbers, and set $N_k = (p_1 \cdot p_2 \cdots p_k) + 1$. It is easy to see that N_k is prime for $1 \le k \le 4$. Is N_k always prime?"

Proof.

i	r_i	q_i	u_i	v_i
-1		-	1	0
0		-	0	1
1				
2				

1.3.8

"Show that if (a, b) = (a, c) = 1, then (a, bc) = 1."

Proof. \Box

1.3.11(c)

"Suppose that (a,b) = 1. Show that $(a+b,a^2+b^2)$ is equal to 1 or 2."

Proof. \Box

1.3.16(a)

"Let F_0 , F_1 , F_2 ,... be the Fibonacci Sequence. In particular, $F_0 = 0$, $F_1 = 1$, and for $n \ge 2$ $F_n = F_{n-1} + F_{n-2}$. Show that any pair of consecutive Fibonacci numbers are relatively prime."

Proof. \Box

[Not from book.]

"Find the gcd of and Bezout's coefficients for 15147 and 891800."

Proof.

1.4.4

"Let n be a positive integer. Show that the relation on the integers \mathbb{Z} defined by $a \sim b \Leftrightarrow n | (b-a)$ is an equivalence relation. (Theorem 1.4.3)."

Proof.