Math 422, Homework 1

[Your name]

February 8, 2012

1.1.1(b)(d)

"Suppose $|A|=m$ and $|B|=n$, where m and n are finite, and let $f: A \rightarrow B$ be a function from A to B.
(b) What can you say about m and n if f is one-to-on? if f is onto? if f is a bijection.
(d) How many possible one-to-one functions are there from A to B ? How many possible functions are there from A to B ? How many relations are there from A to B ?"

Proof.

1.2.6

"Prove that if G is a set with an associative binary operation $*$ such that both of the equations $a * x=b$ and $y * a=b$ have unique solutions whenever a and b are in G, then G is a group."

Proof.

1.2.8

"Prove that if G is a group such that $g^{2}=e$ for all $g \in G$, then G is abelian.."
Proof.

1.3.4

"Let $p_{1}, p_{2}, \ldots, p_{k}$ be the first k prime numbers, and set $N_{k}=\left(p_{1} \cdot p_{2} \cdots p_{k}\right)+1$. It is easy to see that N_{k} is prime for $1 \leq k \leq 4$. Is N_{k} always prime?"

Proof.

i	r_{i}	q_{i}	u_{i}	v_{i}
-1		-	1	0
0		-	0	1
1				
2				

1.3.8

"Show that if $(a, b)=(a, c)=1$, then $(a, b c)=1$."
Proof.

1.3.11(c)

"Suppose that $(a, b)=1$. Show that $\left(a+b, a^{2}+b^{2}\right)$ is equal to 1 or 2 ."
Proof.

1.3.16(a)

"Let $F_{0}, F_{1}, F_{2}, \ldots$ be the Fibonacci Sequence. In particular, $F_{0}=0, F_{1}=1$, and for $n \geq 2 F_{n}=F_{n-1}+F_{n-2}$. Show that any pair of consecutive Fibonacci numbers are relatively prime."

Proof.

[Not from book.]

"Find the gcd of and Bezout's coefficients for 15147 and 891800."
Proof.

1.4.4

"Let n be a positive integer. Show that the relation on the integers \mathbb{Z} defined by $a \sim b \Leftrightarrow n \mid(b-a)$ is an equivalence relation. (Theorem 1.4.3)."

Proof.

